MTA and Google innovate to resolve subway system challenges

https://media.cnn.com/api/v1/images/stellar/prod/gettyimages-2161596730.jpg?c=16x9&q=w_800,c_fill

The New York City Metropolitan Transportation Authority (MTA) has partnered with Google for a groundbreaking pilot project designed to enhance the dependability of its outdated subway network. Utilizing Google’s smartphone technology, this initiative aims to detect and resolve track problems proactively to prevent service interruptions. Called “TrackInspect,” the program marks a major advancement in incorporating artificial intelligence and contemporary technology into public transportation.

La iniciativa piloto, que inició en septiembre de 2024 y finalizó en enero de 2025, consistió en equipar algunos vagones del metro con teléfonos Google Pixel. Estos dispositivos se encargaron de recolectar datos de audio y vibración para identificar posibles fallas en las vías. Luego, la información fue evaluada a través de los sistemas de inteligencia artificial en la nube de Google, los cuales señalaban las zonas que necesitaban una revisión más detallada por parte del personal de la MTA.

“By spotting initial indicators of track deterioration, we not only cut down on maintenance expenses but also lessen inconveniences for passengers,” stated Demetrius Crichlow, president of New York City Transit, in an announcement made public in late February.

“By identifying early signs of track wear and tear, we not only reduce maintenance costs but also minimize disruptions for riders,” said Demetrius Crichlow, president of New York City Transit, in a statement released in late February.

Addressing delays through AI and smartphones

Subway delays continue to be a constant issue for those traveling in New York City. Towards the end of 2024, the MTA documented tens of thousands of delays monthly, with numbers surpassing 40,000 in just December. These interruptions stem from numerous causes, such as track flaws, construction activities, and shortages of crew members.

El programa TrackInspect se centra en abordar un aspecto crucial del problema: detectar y solucionar problemas mecánicos antes de que se agraven. Durante la prueba piloto, se instalaron seis teléfonos Google Pixel en cuatro vagones R46 del metro, reconocidos por sus asientos de color naranja y amarillo. Los dispositivos registraron 335 millones de lecturas de sensores, más de un millón de datos de GPS y 1,200 horas de audio.

The TrackInspect program aims to address one critical aspect of the issue: identifying and resolving mechanical problems before they escalate. During the pilot, six Google Pixel smartphones were installed on four R46 subway cars, which are known for their distinctive orange and yellow seats. The devices recorded 335 million sensor readings, over one million GPS data points, and 1,200 hours of audio.

Rob Sarno, un asistente del jefe de vías de la MTA, desempeñó un papel crucial en el proyecto. Sus tareas incluían examinar los fragmentos de audio señalados por el sistema de inteligencia artificial para detectar posibles problemas en las vías. “El sistema destacó áreas con niveles de decibelios anormales, lo que podría sugerir uniones sueltas, rieles dañados, u otros defectos,” explicó Sarno.

The A train line was selected for the pilot, providing a varied testing environment with both subterranean and elevated tracks. It also featured segments of newly built infrastructure, which served as a benchmark for analysis. Although not every delay on the A line is due to mechanical issues, the data gathered during the pilot could assist in resolving persistent problems and enhancing overall service.

Encouraging outcomes, yet challenges persist

The TrackInspect initiative produced promising results, as the AI system accurately identified 92% of defect locations that were confirmed by MTA inspectors. Sarno estimated his own accuracy rate in anticipating track defects from audio data to be approximately 80%.

The initiative also featured an AI-driven tool based on Google’s Gemini model, enabling inspectors to inquire about maintenance procedures and repair records. This conversational AI furnished inspectors with straightforward, actionable insights, which further streamlined the maintenance workflow.

Despite its achievements, the pilot program brings up questions concerning its scalability and expenses. The MTA has not revealed the potential cost of deploying TrackInspect throughout its entire subway network, which comprises 472 stations and accommodates over one billion riders each year. The agency is also facing financial difficulties, requiring billions of dollars to finish ongoing infrastructure projects.

Google participated in the pilot as part of a proof-of-concept initiative that was provided at no expense to the MTA. However, broadening the program would probably demand substantial investment, making financing a key factor for those making decisions.

Google’s involvement in the pilot was part of a proof-of-concept initiative developed at no cost to the MTA. However, expanding the program would likely require significant investment, making funding a major consideration for decision-makers.

La colaboración de Nueva York con Google forma parte de una tendencia más amplia en la que ciudades de todo el mundo están adoptando inteligencia artificial y tecnologías inteligentes para mejorar los sistemas de transporte público. Por ejemplo, New Jersey Transit ha utilizado IA para analizar el flujo de pasajeros y la gestión de multitudes, mientras que la Autoridad de Tránsito de Chicago ha implementado medidas de seguridad basadas en IA para detectar armas. En Pekín, se ha introducido la tecnología de reconocimiento facial como alternativa a los boletos de transporte tradicionales, disminuyendo los tiempos de espera en horas pico.

Google ya ha colaborado anteriormente con otras agencias de transporte. El gigante tecnológico ha creado herramientas para optimizar la programación de Amtrak y se ha aliado con proveedores de tecnología de estacionamiento para integrar datos de aparcamiento en la calle en Google Maps. No obstante, la envergadura y complejidad del sistema de metro de Nueva York hace que este proyecto sea especialmente ambicioso.

La red de metro de la MTA es la más grande de Estados Unidos, brindando servicio las 24 horas en muchas de sus líneas. Este funcionamiento continuo añade otra capa de complejidad a los esfuerzos de mantenimiento, ya que las reparaciones y mejoras a menudo deben realizarse junto al servicio activo. Con el uso de tecnología de inteligencia artificial y teléfonos inteligentes, el programa TrackInspect podría ayudar a la MTA a enfrentar estos desafíos de manera más eficiente.

The MTA’s subway network is the largest in the United States, with 24-hour service on many lines. This round-the-clock operation adds another layer of complexity to maintenance efforts, as repairs and upgrades often need to be conducted alongside active service. By using AI and smartphone technology, the TrackInspect program could help the MTA address these challenges more efficiently.

Although the TrackInspect pilot has concluded, the MTA is investigating collaborations with additional technology providers to further improve its maintenance procedures. The agency is also evaluating data from the pilot to assess its effects on minimizing delays and enhancing service. Initial signs indicate that specific types of delays, including those from braking problems and track defects, declined on the A line during the pilot. However, the MTA warns that more analysis is required to verify a direct connection to the program.

Por el momento, el piloto simboliza un paso esperanzador hacia la modernización de las operaciones de la MTA y la resolución de los desafíos de un sistema de tránsito envejecido. Al combinar el conocimiento de empresas tecnológicas como Google con la experiencia de los profesionales del transporte, la ciudad de Nueva York podría ofrecer una experiencia de metro más confiable para sus millones de pasajeros diarios.

Mientras Sarno reflexiona sobre el proyecto, destaca el potencial de las soluciones impulsadas por inteligencia artificial para transformar el transporte público. “Esta tecnología nos permite identificar problemas con anticipación, reaccionar más rápido y, en última instancia, ofrecer un mejor servicio a nuestros clientes,” afirmó.

As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.

The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.

By Winry Rockbell

You May Also Like

  • Improve the cold chain using real-time software in California

  • Exploring Atomfall’s Historical Realities

  • Behind the scenes of Twitter’s inception

  • Surprising combustion properties of kitchen staples